首页> 外文OA文献 >Use of Langmuir probes in non-Maxwellian space plasmas
【2h】

Use of Langmuir probes in non-Maxwellian space plasmas

机译:在非麦克斯韦空间等离子体中使用Langmuir探针

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Disturbance of the Maxwellian plasma may occur in the vicinity of a spacecraft due to photoemission, interactions between the spacecraft and thermospheric gases, or electron emissions from other devices on the spacecraft. Significant non-Maxwellian plasma distributions may also occur in nature as a mixture of ionospheric and magnetospheric plasmas or secondaries produced by photoionization in the thermosphere or auroral precipitation. The general formulas for current collection (volt–ampere curves) by planar, cylindrical, and spherical Langmuir probes in isotropic and anisotropic non-Maxwellian plasmas are examined. Examples are given of how one may identify and remove the non-Maxwellian components in the Langmuir probe current to permit the ionospheric parameters to be determined. Theoretical volt–ampere curves presented for typical examples of non-Maxwellian distributions include: two-temperature plasmas and a thermal plasma with an energetic electron beam. If the nonionospheric electrons are Maxwellian at a temperature distinct from that of the ionosphere electrons, the volt–ampere curves can be fitted directly to obtain the temperatures and densities of both electron components without resorting to techniques that attempt to derive the plasma distribution from the current by taking derivatives. For an arbitrary isotropic distribution, the current for retarded particles is shown to be identical for the three geometries. For anisotropic distributions, the three probe geometries are not equally suited for measuring the ionospheric electron temperature and density or for determining the distribution function in the presence of non-Maxwellian background electrons. © 1999 American Institute of Physics.
机译:由于光发射,航天器与热层气体之间的相互作用或航天器上其他设备的电子发射,麦克斯韦等离子体的扰动可能发生在航天器附近。重要的非麦克斯韦等离子体分布在自然界中也可能是电离层和磁层等离子体的混合物,或由热层中的光电离或极光降水产生的二次离子的混合物。研究了在各向同性和各向异性非麦克斯韦等离子体中通过平面,圆柱和球形Langmuir探针收集电流的通用公式(伏安曲线)。给出了如何识别和去除Langmuir探针电流中的非麦克斯韦分量以允许确定电离层参数的示例。对于非麦克斯韦分布的典型示例,呈现的理论伏安曲线包括:两温等离子体和带有高能电子束的热等离子体。如果非电离层电子在与电离层电子不同的温度下是麦克斯韦,则伏安曲线可以直接拟合以获得两个电子成分的温度和密度,而无需借助试图从电流中得出等离子体分布的技术通过衍生。对于任意的各向同性分布,对于三种几何形状,延迟粒子的电流显示为相同。对于各向异性分布,这三种探针几何形状不适合测量电离层电子的温度和密度,也不适用于在存在非麦克斯韦背景电子的情况下确定分布函数。 ©1999美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号